米奇777在线观看_99re8这里有精品热视频8在线_国产成人精品午夜_精品国产SM捆绑最大网免费站_亚洲自拍另类欧美综合_欧美大鸡

深圳捷迅易聯科技有限公司官網
常見問題
Frequently asked questions
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------

IoT的核心:盤點下一代超低功耗節點黑科技

時間:2024-09-12 分類:行業知識

隨著物聯網的逐漸鋪開,人們已經在生活中看到了越來越多的物聯網模塊:智能水表,共享單車,等等。目前的物聯網仍然主要由運營商推動,物聯網模塊需要使用標準蜂窩協議與基站通訊。由于基站需要覆蓋盡可能大的面積,因此物聯網模塊需要能做到在距離基站很遠時仍能通訊,這就對于物聯網模塊的射頻發射功率有了很高的要求;從另一個角度來說,物聯網模塊在做無線通訊時仍然需要消耗高達30mA的電流,這使得目前的物聯網模組仍然需要配合較高容量的電池(如五號電池)才能工作,這也導致了物聯網模組的尺寸很難做小。

360截圖20240912141751616

為了能進一步普及物聯網,必須克服這個功耗以及尺寸的限制。例如,如果未來要把物聯網做到植入人體內,則不可能再搭配五號電池,而必須使用更小的電池甚至使用能量獲取系統從環境中獲取能量徹底擺脫電池的限制。為了實現這個目標,從通訊協議上說,可以使用更低功耗的自組網技術,類似BLE;而從電路實現上,則必須使用創新電路來降低功耗。


根據之前的討論,目前電池的尺寸和成本都已經成為了限制IoT設備近一步進入潛在市場的瓶頸。那么,有沒有可能使用從環境中獲得能量來支持物聯網節點工作呢?這種從環境中獲取能量來支持物聯網節點工作的模塊叫做“能量獲取”(energy harvesting),目前能量獲取電路芯片的研究已經成為了研究領域的熱門方向。


目前最成熟的能量獲取系統可以說是太陽能電池。傳統太陽能電池能提供較好的能量獲取效率,但是付出的代價是難以集成到CMOS芯片上。最近,不少研究機構都在使用新型CMOS太陽能電池,從而可以和物聯網節點的其他模塊集成到同一塊芯片上,大大增加了集成度并減小模組尺寸。當然,集成在CMOS芯片上的太陽能電池需要付出低能量輸出的代價,目前常見的CMOS片上太陽能電池在室內燈光下能提供nW等級的功率輸出,而在強光下能提供uW級別的功率輸出,這就對物聯網模組的整體功耗優化提出了很高的要求。另一方面,也可以將能量獲取與小尺寸微型電池配合使用,當光照較好時使用太陽能電池而在光照較弱時使用備用電池,從而提升整體物聯網模組的電池壽命。


除了太陽能電池外,另一個廣為人知的環境能量就是WiFi信號。今年ISSCC上,來自俄勒岡州立大學的研究組發表了從環境中的WiFi信號獲取能量的芯片。先來點背景知識:WiFi的最大發射功率是30dBm(即1W),在簡單的環境里(即沒有遮擋等)信號功率隨著與發射設備的距離平方衰減,在距離3m左右的距離信號功率就衰減到了1uW(-30dBm)左右,而如果有物體遮擋則會導致功率更小。俄勒岡州立大學發表的論文中,芯片配合直徑為1.5cm的天線可以在非常低的無線信號功率(-33dBm即500nW)下也能工作給電池充電,能量獲取效率在5-10%左右(即在距離發射源3m的情況下輸出功率在50nW左右)。因此,WiFi信號也可以用來給物聯網模組提供能量,但是其輸出功率在現實的距離上也不大,同樣也需要節點模組對于功耗做深度優化。


另外,機械能也可以作為物聯網節點的能量獲取來源。壓電效應可以把機械能轉換為電能,從而使用壓電材料(例如壓電MEMS)就能為物聯網節點充電。使用壓電材料做能量源的典型應用包括各種智能城市和工業應用,例如當有車壓過減速帶的時候,減速帶下的物聯網傳感器上的壓電材料可以利用車輛壓力的機械能給傳感器充電并喚醒傳感器,從而實現車輛數量統計等。這樣,機械壓力即可以作為需要測量的信號,其本身又可以作為能量源,所以在沒有信號的時候就無需浪費能量了!壓電材料的輸出功率隨著機械能的大小不同會有很大的區別,一般在nW-mW的數量級范圍。


傳統的IoT無線收發系統使用的往往是周期性通訊或主動事件驅動通訊的方案。周期性通訊指的是IoT節點定期打開與中心節點通訊,并在其他時間休眠;事件驅動通訊則是指IoT節點僅僅在傳感器監測到特定事件時才與中心節點通訊,而其它時候都休眠。


在這兩種模式中,都需要IoT節點主動與中心節點建立連接并通訊。然而,這個建立連接的過程是非常消耗能量的。因此,喚醒式無線系統的概念就應運而生。


什么是喚醒式無線系統?就是該該系統在大多數時候都是休眠的,僅僅當主節點發射特定信號時才會喚醒無線系統。換句話說,連接的建立這個耗費能量的過程并不由IoT節點來完成,而是由中心節點通過發送喚醒信號來完成。

360截圖20240912141951779

當建立連接的事件由中心節點來驅動時,一切都變得簡單。首先,中心節點可以發射一段射頻信號,而IoT節點可以通過能量獲取(energy harvesting)電路從該射頻信號中獲取能量為內部電容充電。當IoT節點的電容充電完畢后,無線連接系統就可以使用電容里的能量來發射射頻信號與中心節點通訊。這樣一來,就可以做到無電池操作。想象一下,如果不是使用喚醒式無線系統,而是使用IoT主動連接的話,無電池就會變得困難,因為無法保證IoT節點在需要通訊的時候在節點內有足夠的能量。反之,現在使用喚醒式系統,中心節點在需要IoT節點工作時首先為其充電喚醒,就能保證每次IoT節點都有足夠能量通訊。


那么,這樣的喚醒式無線系統功耗有多低呢?在2016年的ISSCC上,來自初創公司PsiKick發表的支持BLE網絡的喚醒式接收機在做無線通訊時僅需要400 nW的功耗,而到了2017年ISSCC,加州大學圣地亞哥分校發表的喚醒式接收機更是把功耗做到了4.5 nW,比起傳統需要毫瓦級的IoT芯片小了4-6個數量級!

360截圖20240912142246990

來自UCSD的4.5 nW超低功耗喚醒式接收機


反射調制系統


喚醒式接收機主要解決了無線鏈路中如何低功耗接收信號的問題,但是在如果使用傳統的發射機,則還是需要主動發射射頻信號。發射機也是非常費電的,發射信號時所需的功耗常常要達到毫瓦數量級。那么,有沒有可能在發射機處也做一些創新,降低功耗呢?


確實已經有人另辟蹊徑,想到了不發射射頻信號也能把IoT節點傳感器的信息傳輸出去的辦法,就是由華盛頓大學研究人員提出的使用發射調制。反射調制有點像在航海和野外探險中的日光信號鏡,日光信號鏡通過不同角度的反射太陽光來傳遞信息。在這里,信號的載體是太陽光,但是太陽光能量并非傳遞信號的人發射的,而是作為第三方的太陽提供的。類似的,華盛頓大學研究人員提出的辦法也是這樣:中心節點發射射頻信號,IoT節點則傳感器的輸出來改變(調制)天線的發射系數,這樣中心節點通過檢測反射信號就可以接收IoT節點的信號。在整個過程中IoT節點并沒有發射射頻信號,而是反射中心節點發出的射頻信號,這樣就實現了超低功耗。


華盛頓大學的Shyam Gollakota教授率領的研究組在反射調制實現的超低功耗IoT領域目前已經完成了三個相關項目。去年,他們完成了passive WiFi和interscatter項目。Passive WiFi用于長距離反射通信,使用WiFi路由器發射功率相對較高的射頻信號,而IoT節點則調制天線反射系數來傳遞信息。多個IoT節點可以共存,并使用類似CDMA擴頻的方式來同時發射信息。interscatter則用于短距離數據傳輸,使用移動設備發射功率較低的射頻信號,而IoT節點則調制該射頻信號的反射來實現信息傳輸的目的。Passive WiFi和interscatter芯片的功耗都在10-20微瓦附近,比起動輒毫瓦級別的傳統IoT無線芯片小了幾個數量級,同時也為物聯網節點進入人體內等應用場景鋪平了道路。

360截圖20240912142349499

Passive WiFi(上)與Interscatter(下)使用反射調制,分別針對長距離與短距離應用。


Passive WiFi和Interscatter還需要使用電信號因此需要供電,而Gollakota教授最近發表的Printed WiFi則是更進一步,完全不需要供電了!


在物聯網的應用中,許多需要檢測的物理量其實不是電信號,例如速度,液體流量等等。這些物理量雖然不是電物理量,但是由于目前主流的信號處理和傳輸都是使用電子系統,因此傳統的做法還是使用傳感器電子芯片把這些物理量轉化為電信號,之后再用無線連接傳輸出去。其實,這一步轉化過程并非必要,而且會引入額外的能量消耗。Printed WiFi的創新之處就是使用機械系統去調制天線的反射系數,從而通過反射調制把這些物理量傳輸出去。這樣,在IoT節點就完全避免了電子系統,從而真正實現無電池工作!


目前,這些機械系統使用3D打印的方式制作,這也是該項目取名Printed WiFi的原因。

360截圖20240912142502040

上圖是Printed WiFi的一個例子,即轉速傳感器。彈簧、齒輪等機械器件在上方測速儀旋轉時會周期性地閉合/打開最下方天線(slot antenna)中的開關,從而周期性地(周期即旋轉速度)改變最下方天線的反射特性,這樣中心節點只要通過反射射頻信號就能讀出旋轉速度。最下方的圖是該傳感器在不同轉速時的反射信號在時間域的變化情況,可見通過反射信號可以把轉速信息提取出來。


超低功耗傳感器


物聯網節點最基本的目標就是提供傳感功能,因此超低功耗傳感器也是必不可少。目前,溫度、光照傳感器在經過深度優化后已經可以實現nW-uW數量級的功耗,而在智能音響中得到廣泛應用的聲音傳感器則往往要消耗mW數量級甚至更高的功耗,因此成為了下一步突破研發的重點。


在聲音傳感器領域,最近的突破來自于壓電MEMS。傳統的聲音傳感器(即麥克風)必須把整個系統(包括后端ADC和DSP)一直處于活動待機狀態,以避免錯過任何有用的聲音信號,因此平均功耗在接近mW這樣的數量級。然而,在不少環境下,這樣的系統其實造成了能量的浪費,因為大多數時候環境里可能并沒有聲音,造成了ADC、DSP等模組能量的浪費。而使用壓電MEMS可以避免這樣的問題:當沒有聲音信號時,壓電MEMS系統處于休眠狀態,僅僅前端壓電MEMS麥克風在待命,而后端的ADC、DSP都處于休眠狀態,整體功耗在uW數量級。而一旦有用聲音信號出現并被壓電MEMS檢測到,則壓電MEMS麥克風可以輸出喚醒信號將后面的ADC和DSP喚醒,從而不錯過有用信號。因此,整體聲音傳感器的平均功耗可以在常規的應用場景下可以控制在uW數量級,從而使聲音傳感器可以進入更多應用場景。


超低功耗MCU


物聯網節點里的最后一個關鍵模組是MCU。MCU作為控制整個物聯網節點的核心模組,其功耗也往往不可忽視。如何減小MCU的功耗?MCU功耗一般分為靜態漏電和動態功耗兩部分。在靜態漏電部分,為了減小漏電,可以做的是減小電源電壓,以及使用低漏電的標準單元設計。在動態功耗部分,我們可以減小電源電壓或者降低時鐘頻率來降低功耗。由此可見,降低電源電壓可以同時降低靜態漏電和動態功耗,因此能將電源電壓降低的亞閾值電路設計就成了超低功耗MCU設計的必由之路。舉例來說,將電源電壓由1.2V降低到0.5V可以將動態功耗降低接近6倍,而靜態漏電更是指數級下降。當然,亞閾值電路設計會涉及一些設計流程方面的挑戰,例如如何確定亞閾值門電路的延遲,建立/保持時間等都需要仔細仿真和優化。在學術界,弗吉尼亞大學的研究組發布了動態功耗低至500nW的傳感器SoC,其中除了MCU之外還包括了計算加速器和無線基帶。在已經商業化的技術方面,初創公司Ambiq的Apollo系列MCU可以實現35uA/MHz的超低功耗,其設計使用了Ambiq擁有多年積累的SPOT亞閾值設計技術。在未來,我們可望可以看到功耗低至nW數量級的MCU,從而為使用能量獲取技術的物聯網節點鋪平道路。


結語


隨著物聯網的發展,目前第一代廣域物聯網已經快速鋪開走進了千家萬戶。然而,廣域物聯網節點由于必須滿足覆蓋需求,因此射頻功耗很難做小,從而限制了應用場景(例如人體內傳感器等無法使用大容量電池的場景)。局域物聯網將會成為物聯網發展的下一步,本文介紹的能量獲取技術配合超低功耗無線通信、MCU和傳感器可望讓物聯網節點突破傳統的限制,在尺寸和電池壽命方面都得到革命性的突破,從而為物聯網進入可植入式傳感器等新應用鋪平道路。

本文轉自:半導體行業觀察


常見問題
主站蜘蛛池模板: 亚洲精品网站在线观看|国产精品美女久久福利网站|久久xxxx|亚洲精品精品|国产激情99|国产高清无码日韩一区 | 男女做=aj视频免费的网站|国产在线观看=av|亚洲国产精品嫩草影院|欧美久久激情|国产网站色|岛国视频在线免费观看 | 久久不见久久见免费视频7|一级一级97片看一级毛片|奇迹少女第五季免费中文版|日韩字幕一中文在线综合|久久人精品|www.日韩精品.com | 国精产品999一区二区三区有限|日韩毛片|成人免费看片又大又黄|麻豆出品视频在线|4438全国成人免费|青草视频精品 | 免费色综合|极品的亚洲|C=aOPROM国产在线视频|色伊人网站|国产精品=a一|97午夜影院 | 中国一级毛片视频|无码专区狠狠躁天天躁|日本高清视频一区|日韩欧美亚洲精品|欧美亚洲一区二区三区|精品欧美一区二区在线看片 | 免费无遮挡无码视频网站|欧美人与ZOXXXX视频|色香婷婷综合激情网|亚洲综合久久无码色噜噜|欧美xxxx黑人又粗又长密月|国产精品九九久久久久久久 | 高清中文字幕在线=a片|亚洲=aV日韩综合一区久热|品色堂永远的免费论坛|国产精品久久精品久久|国产视频中文字幕|亚洲精品国产综合 | 久精品国产欧美|精品久久久久免费影院的功能介绍|香港三日本三级少妇三级视频|草草视频网|日韩精品免费在线视频|chinese洗澡偷窥voyeurhit | 免费=av成人|無碼噴水國產高潮=aV|www.91麻豆|亚洲欧美视频一级|欧美一站二站|91在线日本 | 唯美清纯亚洲|最近的2019免费中文字幕|西西人体www大胆高清视频|成人超碰97|婷婷射吧|亚欧洲精品视频免费观看mv在线观看 | 蓝宇在线|国产成人精品午夜视频|成人在线免费播放视频|JZZIJZZIJ在线观看亚洲熟妇|久久99热国产|亚洲=aV男人的天堂在线观看 | 97久久精品人人澡人人爽|亚洲人成图片小说网站|99久久精品毛片免费播放高潮|夜夜操网站|三区在线|69看片 | 免费线上=av|成人欧美精品一区二区|色人阁网站|欧美精品一区二区免费视频|日韩综合色|国产黄色精品视频 | 亚洲wwww|给个毛片网站|欧美日韩伦理在线|日本妈妈黄色片|日韩毛片在线观看|久久精品观看 | 国产内谢|成人=av高清|91在线成人影院|国产性猛交xxxx免费看|一级做=a爰片久久毛片苍井优|麻豆视频在线 | 亚洲精品视频网址|新91网|国产乱人伦偷精品视频色欲|猫咪=av官网|可以免费看的毛片|91国产视频在线 | 久久伊人精品|91精品色|精产国品一区二区三区四区|日韩影视在线|国产男女猛烈无遮挡免费视频网站|成品片=a免免费人看 | 国产香蕉在线观看|亚洲=aV无码乱码国产精品久久|最新中文字幕=av无码专区不卡|日韩午夜大片|精品视频久久久久久|性少妇MDMS丰满HDFILM | 亚洲人成网站在线播放小说|亚洲国产精品尤物yw在线观看|韩国一级影院|天天综合操|亚洲欧洲精品一区|#NAME? | 精品精品在线视频|男女18禁啪啪无遮挡|国产一二三区精品视频|yy6080午夜|天天操综合网站|久久免费精品视频 | 国产高跟丝袜脚交视频|最短的距离是圆的高清在线观看|一区二区三区视频播放|国产精品黄页在线播放免费|#NAME?|精品国产乱码久久久久久中文 | 美女黄视频网站|热热色影音先锋|国产精品久久久久久久久久ktv|最近免费中文字幕MV在线视频3|日本在线无|夜夜爽久久揉揉一区 | 99热久只有|九一免费视频|中日韩无砖码一线二线|日韩免费成人=av|国产在线中文字幕|国产=aV麻豆M=aG剧集 | 高清视频在线播放|天堂资源在线www中文|无码人妻=aⅤ一区二区三区|亚洲一区中文字幕永久在线|中文字幕第27页|免费69视频 | 欧美成人性生活片|在线不卡一区二区三区|久久伦理影院|欧洲LV尺码大精品久久久|中文字幕无码=a片久久|最新中文字幕一区 | 亚洲欧美一级久久精品|在线观看午夜视频|日本日韩欧美|久久久新视频|国产精品一色哟哟|98精品在线 | 亚洲=av日韩=av无码黑人|亚洲国产成人=aV毛片大全|成人亚洲一区二区三区在线|亚洲成人在线观看视频|超碰97人人干|精品精品精品 | 婷婷五月综合国产激情|亚洲自拍一区在线观看|日本做暖暖视频高清观看|国产高清一区二区三区综合四季|蜜桃=av影院|天美传媒一区二区 | 爱情到此为止在线观看|精品热99|老熟女多次高潮露脸视频|91国偷自产一区二区三区老熟女|美女久久久久久久久|高潮VPSWINDOWS国产乱 | 老司机67194精品线观看|激情久久久|九九热视频在线播放|乱人伦人妻精品一区二区|欧美一区二区三区影视|日本高清不卡在线观看 | 岛国午夜视频一区三区|欧美成人免费一级|加勒比中文字幕无码一区|亚洲中文字幕在线乱码|草久=av|国产区一区 | 国产草草影院|欧美性生交大片免费看|67194熟妇在线观看永远免费|偷偷碰偷偷鲁免费视频|欧美性生交xxxx乱大交3|激情麻豆视频 | 大内密探零性|国产美女自拍小视频|久久久久久久综合狠狠综合|九九热免费精品|性=a毛片|午夜免费啪啪 | 人人草97|欧美成人免费在线观看视频|国产毛片午夜福利|美国一级黄色毛片|新婚人妻和上司出差被中出|久爱免费视频 | 国产波霸爆乳一区二区|尤物在线网址|黑人干白妞|精品一卡2卡三卡4卡免费视频|亚洲欧美VR色区|国产性=av | 青青草手机视频在线|天天看天天草|新久草视频|中文字幕在线亚洲三区|国产成人啪精品视频免费网|国产精品原创=aV片国产安全 | 国产女人的高潮大叫毛片|国产人妻一区二区三区|yw193最新视频|俺たちの熟女纱香60歳|激情成人黄色|久久精品人人做人人综合老师 | 日韩一级片免费|亚洲蜜桃视频|破了亲妺妺的处免费视频国产|码18免费视频|中文字幕亚洲男人的天堂网络|国产精品一区二区2 | 久久久女人与动物群交毛片|草莓国产视频|一区在线播放|97视频精品|久草福利在线视频|久久久久亚洲=av成人网人人软件 | 亚洲精品久久国产精品|亚洲三区精品|麻豆精产一二三产区|午夜嫩草嘿嘿福利777777|亚洲日本久久|亚洲中文无码永久免弗 |